## **C.U.SHAH UNIVERSITY** Winter Examination-2018

\_\_\_\_

| Subject Name | : Mathematics-I |
|--------------|-----------------|
|--------------|-----------------|

|      | Subject                  | Code : 4SC01MAT1 Branch : B.Sc. (All)                                                                                                                                                                                                                      |         |
|------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      | Semeste<br>Instructi     | er : 1 Date : 30/11/2018 Time : 2:30 To 5:30 Marks : 70 ons:                                                                                                                                                                                               |         |
|      | (1)<br>(2)<br>(3)<br>(4) | Use of Programmable calculator & any other electronic instrument is prohibited.<br>Instructions written on main answer book are strictly to be obeyed.<br>Draw neat diagrams and figures (if necessary) at right places.<br>Assume suitable data if needed |         |
| Q-1  |                          | Attempt the following questions:                                                                                                                                                                                                                           | (14)    |
|      | <b>a</b> )               | Find equation of sphere having center (1,2,3) and radius 5.                                                                                                                                                                                                | (2)     |
|      | b)                       | Solve: $y = px + ap(1 - p)$ .                                                                                                                                                                                                                              | (2)     |
|      | <b>c</b> )               | Check the exactness of the differential equation                                                                                                                                                                                                           | (2)     |
|      | -                        | (ax + hy + g)dx + (hx + by + f)dy = 0.                                                                                                                                                                                                                     |         |
|      | <b>d</b> )               | Find order and degree of the differential equation<br>$\left(\frac{d^2y}{d^2}\right)^3 + \left(\frac{d^3y}{d^2}\right)^2 + y = 0.$                                                                                                                         | (1)     |
|      | e)                       | $dx^2$ $dx^3$ $\int dx^3$ Find 11th derivative of sin ( $\pi x$ )                                                                                                                                                                                          | (2)     |
|      | t)                       | True/false: every differentiable function has machlaurin's series                                                                                                                                                                                          | (2) (1) |
|      | r)<br>g)                 | Define: Taylor's series expansion of function                                                                                                                                                                                                              | (1)     |
|      | <b>b</b> )               | Write machlaurin's series of $\log(1+x)$ .                                                                                                                                                                                                                 | (1)     |
|      | i)                       | What is polar form of circle having centre at $(1, 1)$ and radius 4.                                                                                                                                                                                       | (2)     |
| Atte | empt any                 | four questions from Q-2 to Q-8                                                                                                                                                                                                                             |         |
| Q-2  | 1                        | Attempt all questions                                                                                                                                                                                                                                      | (14)    |
|      | a)                       | Find rank of matrix                                                                                                                                                                                                                                        | (5)     |
|      |                          | $\begin{bmatrix} 1 & 1 & -1 & 1 \\ \vdots & \vdots & \vdots \end{bmatrix}$                                                                                                                                                                                 |         |
|      |                          | $\begin{vmatrix} 1 & -1 & 2 & -1 \end{vmatrix}$ .                                                                                                                                                                                                          |         |
|      |                          |                                                                                                                                                                                                                                                            |         |

- **b**) Solve 5x 7y + z = 11, 6x 8y z = 15, 3x + 2y 6z = 7 using Cremer's (5) method. (4)
- c) Find Eigen value of
  - $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$



| Q-3 | a)       | Attempt all questions<br>Discuss the consistency of the system of equation                                                          | (14)<br>(5) |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     |          | 2x + 3y + 4z = 11, x + 5y + 7z = 15, 3x + 11y + 13 z = 25.                                                                          |             |
|     | b)       | If it is consistent then find it's solution.<br>Find characteristic equation of matrix                                              | (5)         |
|     |          | $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ . Using it find value of                                        |             |
|     |          | $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$                                                                             |             |
|     | c)       | If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then verify Caley Hamilton's theorem.                                         | (4)         |
| Q-4 | a)       | Attempt all questions<br>Solve: $(x^2 - y^2)dx + 2xy dy = 0.$                                                                       | (14)<br>(5) |
|     | b)       | Solve: $\frac{dy}{dx} = \cos x \cos y - \sin x \sin y.$                                                                             | (5)         |
|     | c)       | Solve: $\frac{dy}{dx} + \frac{4x}{x^2 + 1} y = \frac{1}{(x^2 + 1)^3}$ .                                                             | (4)         |
| Q-5 | ,        | Attempt all questions                                                                                                               | (14)        |
|     | a)       | Find equation of sphere which passes through $(0,0,0)$ , $(2,0,0)$ , $(0,3,0)$ and $(0,0,4)$ .                                      | (5)         |
|     | b)       | Find equation of sphere having end points of diameter are $(1, -2, 3)$ and                                                          | (5)         |
|     | c)       | (0, -1, 3).<br>Write the polar form of the following points :                                                                       | (4)         |
| Q-6 |          | (a) $(1, \sqrt{3})$ (b) $(-\pi\sqrt{2}, \pi\sqrt{2})$<br>Attempt all questions                                                      | (14)        |
|     | a)<br>b) | State and prove Leibnitz's theorem for n <sup>th</sup> derivative of product.<br>Find n <sup>th</sup> derivative of the following : | (6)<br>(4)  |
|     |          | (a) $\frac{1}{(x-1)(x+2)}$ (b) $\frac{x}{x^2-1}$                                                                                    |             |
|     | c)       | If $y = \cos(m\sin^{-1}(x))$ then show that $(1 - x^2)y_{n+1} - x(2n+1)y_{n+1} + (m^2 - n^2)y_n = 0$ .                              | (4)         |
|     |          |                                                                                                                                     |             |

## Q-7 Attempt all questions

a) State and prove machlaurin's series of e<sup>x</sup> also deduce the machlaurin's series of (5) coshx.

(14)

**b**) Find Taylor's series of  $x^5 + 4x^4 + 6x^3 - 4x + 1$  at x = 2. (5)

## Page 2 || 3



|              | c)                                                                  | Express $e^{sinx}$ in powers of x upto $x^4$ .                                     | (4)  |
|--------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|------|
| Q-8          |                                                                     | Attempt all questions                                                              | (14) |
|              | a)                                                                  | State and prove Lagrange's mean value theorem.                                     | (5)  |
| <b>b</b> ) A | Apply Rolle's theorem for $f(x)=(x-1)\sin x$ in the interval [0, 1] | (5)                                                                                |      |
|              | c)                                                                  | State Cauchy's mean value theorem also apply for $f(x)=x$ and $g(x)=x+1$ in [1,2]. | (4)  |

Page 3 || 3

